Tag Archives: Soil

History is alive in your front yard

Was your yard once a farm? It matters! Check out our recent paper here.

This farm will affect the yards soon to replace it long after it is gone (Photo: Central Arizona-Phoenix LTER).

This farm will affect the yards soon to replace it long after it is gone (Photo: Central Arizona-Phoenix LTER).

The natural world today bears marks of the  past. These legacies may seem obvious—clearly coastlines remain affected by hurricanes and oil spills long after these disturbances have ended. However, conclusively linking a particular bit of history to specific conditions today turns out to be tricky. In our recent paper with Ann Kinzig at Arizona State and Jason Kaye at Penn State, we investigated whether the amount of carbon and nitrogen stored in soil was different in lawns that had been farms a century ago than in lawns carved out of previously undisturbed Sonoran Desert ecosystem. It did matter! It also mattered how old the lawn was. Thus two ecosystems (for example, two lawns) that look similar on the surface may function quite differently because they have different histories. (So don’t judge a book by its cover!) Globally, explosive urban growth gobbles up both farmland and natural ecosystems alike. So the habitat for billions of urban people will depend on what their neighborhood used to be. Moreover, carbon and nitrogen are two chemical elements that dramatically alter the energy balance of the atmosphere and the water quality of lakes, streams, and bays. So, the sequestration, or storage, or carbon and nitrogen in soil is of widespread interest. (This work was funded by a McDonnell Foundation grant to Ann Kinzig, and a NSF grant to the CAP-LTER.)